Hallstar Ester Plasticizers for
SMP Sealants
Performance Advantages in SMP Sealants

• Esters for modification of SMP: MS & SPUR Sealants
 – Testing performed on a 1K Di-functional MS Polymer*
 • Kaneka S303H (High Modulus)

• Performance Goals
 – Meet/Exceed Phthalate performance
 – Increase Elongation
 – Reduction in Tg
 – Provide stability in Physical Testing after aging

• Compared HallStar Esters with: DIDP, DINP

• HallStar Products:
 – Plasthall 190
 – Plasthall 180 S
 – TegMeR 809
 – Paraplex A-9000
 – Plasthall PR-A610
Ester Evaluations in SMP

- Initial and Aged Ester Performance Evaluations in SMP
 - Viscosity, Brookfield
 - Skin Formation Time
 - Original Physical Properties ASTM D412
 - Modulus, tensile, elongation, hardness
 - Tg, DSC
 - Adhesion – Peel ASTM C794
 - Aluminum, float glass
 - Dry and wet
 - Slump ASTM D2202
- DINP and DIDP as standards
Variables / Formulation

SMP
- Kaneka S303H
 - 1K Difunctional MS Polymer*
 (high modulus)

Plasticizers
- Plasthall 190 (Aliphatic alkylated ester)
- TegMeR 809 (Aliphatic PEG ester)
- Plasthall PR-A610 (Renewable ester)
- Plasthall 180S (Aliphatic linear ester)
- Paraplex A-9000 (Aromatic Polymeric Phthalate)
- DIDP (Aromatic Phthalate)
- DINP (Aromatic Phthalate)

Base Formulation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Silane modified polyether</td>
<td>100.0</td>
</tr>
<tr>
<td>UV stabilizers</td>
<td>2.0</td>
</tr>
<tr>
<td>Precipitated calcium carbonate</td>
<td>160.0</td>
</tr>
<tr>
<td>Calcium carbonate</td>
<td>54.0</td>
</tr>
<tr>
<td>Titanium oxide</td>
<td>20.0</td>
</tr>
<tr>
<td>Plasticizer</td>
<td>90.0</td>
</tr>
<tr>
<td>VTMO - dehydrate</td>
<td>3.0</td>
</tr>
<tr>
<td>DAMO – adhesion promoter</td>
<td>3.0</td>
</tr>
<tr>
<td>Catalyst</td>
<td>2.0</td>
</tr>
</tbody>
</table>

MS Polymer is a registered trademark of Kaneka Corporation
Viscosity

- Plasthall 180 S high viscosity, with exceptional shear reduction
- Plasthall 190 / TegMeR 809 low viscosity = faster extrusion
Physical testing

- High Elongation
 - Plasthall 180 S
 - TegMeR 809
- High Tensile
 - DIDP
- High Hardness
 - Plasthall 190
Elongation after Aging (ASTM C794)

- Heat Age (21 Day@ 70°C)
 - High Elongation
 - Plasthall 180 S
 - TegMeR 809
Tack Free Time/Skin Formation (ASTM C679 Modified)

- Fast Skin Time
 - Plasthall 190
 - Predicting fast cure through

- Slow Skin Time
 - Plasthall 180 S
 - Use as elongation additive
Tg by DSC (°C)

- **Ultra Low Tg**
 - Plasthall 190
Adhesion in Peel (ASTM C794)

- **Stability**
 - Plasthall 190, TegMeR 809
- **Moisture required**
 - Plasthall 180 S (use less dehydrant)
Hallstar Ester Summary in SMP

• **TegMeR 809**
 – Increase Elongation
 – Maintain Tensile, Hardness
 – Stable after aging/weathering

• **Plasthall 190**
 – Ultra Low Tg
 – Fast Skin time/cure through
 – High Hardness
 – Stable after aging/weathering

• **Paraplex A-9000**
 – Good Elongation while maintaining Tensile strength
 – High adhesive strength

• **Plasthall 180 S**
 – Significant Increase in Elongation
 – Potential use as elongation additive
What’s next at Hallstar in SMP?

• Next Round of SMP sealant evaluations to include:
 – SPUR (vs. MS tested)
 – Additional Polymeric Ester Plasticizers
 – Ester Blends (for optimization)
 – Weathering Testing (Xenon Arc/QUV)
 – Recovery/Rebound
Thank you